Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways
نویسندگان
چکیده
In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin-proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function.
منابع مشابه
The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases
Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activitie...
متن کاملStructural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases.
XopD (Xanthomonas outer protein D), a type III secreted effector from Xanthomonas campestris pv. vesicatoria, is a desumoylating enzyme with strict specificity for its plant small ubiquitin-like modifier (SUMO) substrates. Based on SUMO sequence alignments and peptidase assays with various plant, yeast, and mammalian SUMOs, we identified residues in SUMO that contribute to XopD/SUMO recognition...
متن کاملA Pathogen Type III Effector with a Novel E3 Ubiquitin Ligase Architecture
Type III effectors are virulence factors of Gram-negative bacterial pathogens delivered directly into host cells by the type III secretion nanomachine where they manipulate host cell processes such as the innate immunity and gene expression. Here, we show that the novel type III effector XopL from the model plant pathogen Xanthomonas campestris pv. vesicatoria exhibits E3 ubiquitin ligase activ...
متن کاملThe roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk
Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...
متن کاملScreening and identification of SUMP-proteins in sub-acute treatment with diazinon
Objective(s):Small ubiquitin-like modifiers (SUMOs) are a family of ubiquitin-related, proteins that are involved in a wide variety of signaling pathways. SUMOylation, as a vital post translational modification, regulate protein function in manycellular processes. Diazinon (DZN), an organophosphate insecticide, causses oxidative stress and subsequently programmed cell death in different tissues...
متن کامل